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Abstract

In this paper we provide a complete description of the first integrals of the classical Halphen system
that can be described by formal power series. As a corollary we also obtain a complete description of
its analytic first integrals in a neighborhood of the origin.
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1. Introduction to the problem

The Halphen system (s¢2])

x1 = xpx3 — x1(x2 + x3), X2 = x3x1 — x2(x3 + x1), X3 = x1x2 — x3(x1 + x2),
1)

is a famous model (see for instan@4,5]), wherexy, x2 andxg are real variables. This
system first appeared in Darboux’s work ($88 and was later solved by Halphen[ii.

Later it was shown that this system is equivalent to the Einstein field equations for a diagonal
self-dual Bianchi-IX metric with Euclidean signature ($2g!]) and also that arises in the
similarity reductions of associativity equations on a three-dimensional Frobenius manifold
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(se€3]). From the point of view of the integrability, this system has been intensively studied
using different theories. One of the main results in this direction is that sydfecan be
explicitly integrated, since we can express its general solution in terms of elliptic integrals
(sed5,8,7] butthe firstintegrals are not global and are multi-valued non-algebraic functions
(se€9]). Another result that we want to mentior{@& where the authors prove by means of
the so-called Darboux polynomials that syst@idoes not admit a non-constant algebraic
first integral.

The aim of this paper is to study the existence of first integrals of sy@lt¥that can be
described by formal series.

A formal first integral f = f(x) of system(1) is a formal power series in the variables
x such that

3

a
> Ty =o,
k=1

different from a polynomial. We recall that the polynomial first integrals of systgm
were studied ij6] where the authors proved that systéihdoes not admit a non-constant
polynomial first integral.

The first main result of this paper is:

Theorem 1. System (1) does not have formal first integrals.

Here ananalytic first integral of system(1) is an analytic function which is constant over
the trajectories of systefi) and it is different from a polynomial. The second main result
of this paper is:

Theorem 2. System (1) does not have analytic first integrals in a neighborhood of the
origin.

To descrive the method of proof, we first note that the three hyperplanes
Hi=x1—x2=0, Hy:=x1—x3=0 and Hz:=x2—x3=0, (2)

are invariant by the flow of syste(t) and that iff := f(x1, x2, x3) is a formal firstintegral
of system(1), then for each = 1, 2, 3, the restriction off to H; = 0 is also a formal
first integral of systen(l) restricted toH; = 0. Thus, the method of proof will consist in
studying completely the formal integrability of the reduced system on &ach 0 to get
exact information on the formal first integrals of the whole sysf&n

The paper is organized as follows: In Sectibwe prove some auxiliary results needed
to proveTheorems 1 and .2n Section3 we provide the proof oTheorems 1 and .2

2. Auxiliary results
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Lemma 3. Let f = f(x1, x2, x3) be a formal power series such that in x; = xj, 1, j €
{1,2,3}, 1 # j, we have f(x1, x2, x3)|xl:x‘, = f, where f is a formal power series in the
variables x j, xi with k € {1, 2, 3}, k # j and k # l. Then, there exists a formal series g =
g(x1, x2, x3) such that f = f + (x; — x;)g.

Proof. We denote byZ* the set of all non-negative integers. We write

k1 _ko k3
f= Z Jicv ko kaX1 X2 X3

(k1.k2.k3)e(Z+)3

Without loss of generality we can assuie 1 andj = 2. Then, writingrxy = x2 + (x1 —
x2), we have

ko k3

f= Z Fevkaka (2 + (x1 — x2))1xz2xg.

(k1.,k2,k3)e(Z+)3

Now, by the Newton’s binomial formula we have
k1

ki) —j ko k
R (A FUEE,

(k1,k2,k3)e(Z+)3 j=0

k1—1
k
k1+ko k 1
- Z frdo ks X220+ (61— x2) Z S ka.ks Z ( j )

(k1,k2,k3)e(Z+)3 (k1,k2,k3)e(Z+)3 j=0
x(x1 — Co)kl_j_1)C‘£+]€2X]§,3 = f(x2, x3) + (x1 — x2)g(x1, X2, x3)
= [+ (x1— x2)g.
which finishes the proof of the lemma.C]

Lemma 4. Let f be a formal first integral of system (1). Then

f=co+ (x1 — x2)(x1 — x3)(x2 — x3)g,

where cq is some constant and g := g(x1, X2, x3) is a formal power series.

Proof. Letfbe aformalfirstintegral of syste(t). We will first prove that if we denote by
the restriction of to {x1 = x2}, thenf = c¢o. Indeed, since fron2), {x1 = x»} is invariant
by system(1), we have thatf := f(x2, x3) = f(x2, x2, x3) is a formal first integral of
system(1) restricted tax; = xo, that is, of system

X2 = —x%, X3 = x% — 2x2x3.

Then, after simplifying by, fsatisfies

0 0
—X2§J;+(x2—2xs)§]; o, ®
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We write f in formal power series in the variables andxz as
f=" feuxbxh. 4)
k=0
Thus, imposing thaf satisfieq3) we get that
=D k4 2) fraxbxs + > 1 fraxs g =0,

k,[>0 k,1>0

which can be rewritten as

> (e +2) frs — U+ D fieri11)xbxh =0, (5)
k,[>0

where f,, , = 0 form < 0. Therefore(5) implies that

(k+20) fis — (4 1)fi_1,41 =0 forevery,[> 0. (6)
Now, we claim that
fiy=0 fork,1>0 and ¢, /) (0,0). 7)

We will prove (7) by induction overk. Fork = 0, (6) becomes 2fo; = 0 for! > 0, which
clearly implies fo; = 0 for [ > 0 and proveg7) for k = 0. Now, assumé€?7) is true for
k=0,...,m—1(m > 1) and we will prove it fotk = m. By inductive hypothesigg) for
k=misjust (n + 2I) f,,; = 0forl > 0, and thus,, ; = 0 for/ > 0. Then,(7) is proved
for k = m and by induction(7) holds. Then, fron(4) and (7)we get thatf = fo 0 := co
and, usind_emma 3with x; = x1 andx; = x», we obtain

f = co+ (x1— x2)go0, 8)

for some formal power serig® := go(x1, x2, x3).

Now, we consudef the restriction of to {x1 = x3}. Then, repeating fof the arguments
we did forf we get thalf do, Wheredp is some constant. Thus, applying agaémma 3
with x; = x1 andx; = x3, we get thaf can also be written as

f=do+ (x1— x3)g1, 9

for some formal power serigg ‘= gl(xl, x2, x3). In a similar way, taklng‘ the restriction
of fto {x2 = x3} and repeating fof the arguments we did fof we get thatf = ¢q for

some constardp. Then, again usingemma 3with x; = x2 andx; = x3, we get thaf can
also be written as

f =-eo+ (x2 — x3)g2, (10)

for some formal power series = ga(x1, x2, x3). Now, evaluating8)—(10)to x; = x2 =
x3 = 0 and equating them, we get that= do = co. Furthermore, equatin(g)—(10)we
get

(x1 — x2)g0 = (x1 — x3)g1 = (x2 — x3)g2,
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which clearly implies that there exists a formal power segies g(x1, x2, x3) such that

g0 = (x1 — x3)(x2 — x3)g, g1 = (x1—x2)(x2 —x3)g, g2 = (x1 — x2)(x1 — x3)g.
(11)

Therefore, the proposition follows frof8) and the first relation ii11). O

3. Proof of the main theorems

Proof of Theorem 1. Letfbe any formal first integral of syste(t). By Proposition 4ve
know thatf can be written as

f=co+ (x1 —x2)(x1 — x3)(x2 — x3)g, (12)

for some constanty and some formal power serigs= g(x1, x2, x3). Imposing thafis a
first integral of systenfl), we get that, after simplifying by — x2)(x1 — x3)(x2 — x3), g
must satisfy

dg

e 2(x3 + x2 + x1)g, (13)

where the derivative is evaluated along a solution of sygtemAe will prove thatg = 0.
For this, we will proceed by reduction to the absurd. Assigm€0 and we will reach a
contradiction. We consider two different cases.

Case 1. g is not divisible byx; — x». In this case, usinglemma 3with x; = x1 and
Xj = x2, We can writeg asg = go + (x1 — x2)g1, wherego := go(x2, x3) # 0 andgy =
g1(x1, x2, x3) are formal power series. Thegy satisfieq13) restricted tox; = xo, that is

9go

0g0
— X2 fog — (x2 — 2x3)—
0x2 0x3

) = 2(x3 + 2x2)go- (14)

Now, we write

g0=)_ g0.jxh, g =g;(x3) withg; being formal power series ig.
j=0

We claim that
goj=0 forj=>0. (15)

From (14) we get thatgo must be divisible byr; and thusgpo = 0. Hence, Eq(15) is
proved forj = 0. Now, we assumgl5)is true forj =0, ...,m — 1 (m > 1) and we will
prove it for j = m. Clearly, by hypothesis of inductioge = 3" ;¢ go, i+mxy™ and then,
from (14), after dividing byx?', we obtain

‘ . . deq ; .
— 2x3 Z 80, j+mXy — X2 2(4 + j + m)go, j4mx} + x2(x2 — 2x3) Z %;—mxé =0
j=0 j=0 j=0

(16)
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Then, evaluating16) on x = 0, we get—2x3go,» = 0, which clearly impliesg,,, =0
and provegl5)for j = m. Then, by the induction proceg45) holds and frorm{15) we get
thatgg = 0, a contradictionCase 2: g is divisible by x1 — x». In this caseg = (x1 — x2)/h
with j > 1,4 # 0 andh := h(x1, x2, x3) is a formal power series such that is not divisible
by x1 — x» and satisfies, after dividing by{ — x»)/, the equation

dh
o =2(x1+ x2 + (j + L)x3)h,

where the derivative of is evaluated along a solution of systé). Then, applying ta:
the same arguments used foin Case 1, we conclude that= 0, a contradiction.

Hence g = 0 and the proof of the theorem follows frqih2) and the definition of formal
firstintegral. O

Proof of Theorem 2. To prove that systenil) does not have analytic first integrals in
a neighborhood of zero, we proceed by contradiction. Assumegtigatain analytic first
integral of systenl) in a neighborhood/ c R? of the origin. Clearlyg;y can be written
as a formal power series which turns out to be convergent. Henég,gris a formal first
integral of systengl), a contradiction witiTheorem 1 Thus,Theorem 4s proved. O
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