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Analytic first integrals of the Halphen system
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Abstract

In this paper we provide a complete description of the first integrals of the classical Halphen system
that can be described by formal power series. As a corollary we also obtain a complete description of
its analytic first integrals in a neighborhood of the origin.
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1. Introduction to the problem

The Halphen system (see[2])

ẋ1 = x2x3 − x1(x2 + x3), ẋ2 = x3x1 − x2(x3 + x1), ẋ3 = x1x2 − x3(x1 + x2),

(1)

is a famous model (see for instance[2,4,5]), wherex1, x2 andx3 are real variables. This
system first appeared in Darboux’s work (see[2]) and was later solved by Halphen in[5].
Later it was shown that this system is equivalent to the Einstein field equations for a diagonal
self-dual Bianchi-IX metric with Euclidean signature (see[1,4]) and also that arises in the
similarity reductions of associativity equations on a three-dimensional Frobenius manifold
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(see[3]). From the point of view of the integrability, this system has been intensively studied
using different theories. One of the main results in this direction is that system(1) can be
explicitly integrated, since we can express its general solution in terms of elliptic integrals
(see[5,8,7]) but the first integrals are not global and are multi-valued non-algebraic functions
(see[9]). Another result that we want to mention is[6] where the authors prove by means of
the so-called Darboux polynomials that system(1) does not admit a non-constant algebraic
first integral.

The aim of this paper is to study the existence of first integrals of system(1) that can be
described by formal series.

A formal first integral f = f (x) of system(1) is a formal power series in the variables
x such that

3∑
k=1

∂f

∂x
Fi(x) = 0,

different from a polynomial. We recall that the polynomial first integrals of system(1)
were studied in[6] where the authors proved that system(1) does not admit a non-constant
polynomial first integral.

The first main result of this paper is:

Theorem 1. System (1) does not have formal first integrals.

Here ananalytic first integral of system(1) is an analytic function which is constant over
the trajectories of system(1) and it is different from a polynomial. The second main result
of this paper is:

Theorem 2. System (1) does not have analytic first integrals in a neighborhood of the
origin.

To descrive the method of proof, we first note that the three hyperplanes

H1 := x1 − x2 = 0, H2 := x1 − x3 = 0 and H3 := x2 − x3 = 0, (2)

are invariant by the flow of system(1) and that iff := f (x1, x2, x3) is a formal first integral
of system(1), then for eachi = 1, 2, 3, the restriction off to Hi = 0 is also a formal
first integral of system(1) restricted toHi = 0. Thus, the method of proof will consist in
studying completely the formal integrability of the reduced system on eachHi = 0 to get
exact information on the formal first integrals of the whole system(1).

The paper is organized as follows: In Section2 we prove some auxiliary results needed
to proveTheorems 1 and 2. In Section3 we provide the proof ofTheorems 1 and 2.

2. Auxiliary results



1194 C. Valls / Journal of Geometry and Physics 56 (2006) 1192–1197

Lemma 3. Let f = f (x1, x2, x3) be a formal power series such that in xl = xj, l, j ∈
{1, 2, 3}, l �= j, we have f (x1, x2, x3)|xl=xj = f̄ , where f̄ is a formal power series in the
variables xj, xk with k ∈ {1, 2, 3}, k �= j and k �= l. Then, there exists a formal series g =
g(x1, x2, x3) such that f = f̄ + (xl − xj)g.

Proof. We denote byZ+ the set of all non-negative integers. We write

f =
∑

(k1,k2,k3)∈(Z+)3

fk1,k2,k3x
k1
1 x

k2
2 x

k3
3 .

Without loss of generality we can assumel = 1 andj = 2. Then, writingx1 = x2 + (x1 −
x2), we have

f =
∑

(k1,k2,k3)∈(Z+)3

fk1,k2,k3(x2 + (x1 − x2))k1x
k2
2 x

k3
3 .

Now, by the Newton’s binomial formula we have

f =
∑

(k1,k2,k3)∈(Z+)3

fk1,k2,k3

k1∑
j=0

(
k1

j

)
x
j
2(x1 − x2)k1−jx

k2
2 x

k3
3

=
∑

(k1,k2,k3)∈(Z+)3

fk1,k2,k3x
k1+k2
2 x

k3
3 + (x1 − x2)

∑
(k1,k2,k3)∈(Z+)3

fk1,k2,k3

k1−1∑
j=0

(
k1

j

)

×(x1 − c0)k1−j−1x
j+k2
2 x

k3
3 = f (x2, x3) + (x1 − x2)g(x1, x2, x3)

= f̄ + (x1 − x2)g,

which finishes the proof of the lemma.�
Lemma 4. Let f be a formal first integral of system (1). Then

f = c0 + (x1 − x2)(x1 − x3)(x2 − x3)g,

where c0 is some constant and g := g(x1, x2, x3) is a formal power series.

Proof. Let f be a formal first integral of system(1). We will first prove that if we denote bȳf
the restriction off to {x1 = x2}, thenf̄ = c0. Indeed, since from(2), {x1 = x2} is invariant
by system(1), we have that̄f := f̄ (x2, x3) = f (x2, x2, x3) is a formal first integral of
system(1) restricted tox1 = x2, that is, of system

ẋ2 = −x2
2, ẋ3 = x2

2 − 2x2x3.

Then, after simplifying byx2, f̄ satisfies

− x2
∂f̄

∂x2
+ (x2 − 2x3)

∂f̄

∂x3
= 0. (3)
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We write f̄ in formal power series in the variablesx2 andx3 as

f̄ =
∑
k,l≥0

f̄k,lx
k
2x

l
3. (4)

Thus, imposing that̄f satisfies(3) we get that

−
∑
k,l≥0

(k + 2l)f̄k,lx
k
2x

l
3 +

∑
k,l≥0

lf̄k,lx
k+1
2 xl−1

3 = 0,

which can be rewritten as∑
k,l≥0

((k + 2l)f̄k,l − (l + 1)f̄k−1,l+1)xk
2x

l
3 = 0, (5)

wheref̄m,n = 0 for m < 0. Therefore,(5) implies that

(k + 2l)f̄k,l − (l + 1)f̄k−1,l+1 = 0 for everyk, l ≥ 0. (6)

Now, we claim that

f̄k,l = 0 fork, l ≥ 0 and (k, l) �= (0, 0). (7)

We will prove(7) by induction overk. Fork = 0, (6) becomes 2lf̄0,l = 0 for l ≥ 0, which
clearly impliesf̄0,l = 0 for l > 0 and proves(7) for k = 0. Now, assume(7) is true for
k = 0, . . . , m − 1 (m ≥ 1) and we will prove it fork = m. By inductive hypothesis,(6) for
k = m is just (m + 2l)f̄m,l = 0 for l ≥ 0, and thus,̄fm,l = 0 for l ≥ 0. Then,(7) is proved
for k = m and by induction,(7) holds. Then, from(4) and (7)we get thatf̄ = f0,0 := c0
and, usingLemma 3with xl = x1 andxj = x2, we obtain

f = c0 + (x1 − x2)g0, (8)

for some formal power seriesg0 := g0(x1, x2, x3).
Now, we consider̂f the restriction off to {x1 = x3}. Then, repeating for̂f the arguments

we did forf̄ , we get that̂f = d0, whered0 is some constant. Thus, applying againLemma 3
with xl = x1 andxj = x3, we get thatf can also be written as

f = d0 + (x1 − x3)g1, (9)

for some formal power seriesg1 := g1(x1, x2, x3). In a similar way, taking̃f the restriction
of f to {x2 = x3} and repeating for̃f the arguments we did for̄f we get thatf̃ = e0 for
some constante0. Then, again usingLemma 3with xl = x2 andxj = x3, we get thatf can
also be written as

f = e0 + (x2 − x3)g2, (10)

for some formal power seriesg2 := g2(x1, x2, x3). Now, evaluating(8)–(10)to x1 = x2 =
x3 = 0 and equating them, we get thate0 = d0 = c0. Furthermore, equating(8)–(10)we
get

(x1 − x2)g0 = (x1 − x3)g1 = (x2 − x3)g2,
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which clearly implies that there exists a formal power seriesg := g(x1, x2, x3) such that

g0 = (x1 − x3)(x2 − x3)g, g1 = (x1 − x2)(x2 − x3)g, g2 = (x1 − x2)(x1 − x3)g.

(11)

Therefore, the proposition follows from(8) and the first relation in(11). �

3. Proof of the main theorems

Proof of Theorem 1. Let f be any formal first integral of system(1). By Proposition 4we
know thatf can be written as

f = c0 + (x1 − x2)(x1 − x3)(x2 − x3)g, (12)

for some constantc0 and some formal power seriesg := g(x1, x2, x3). Imposing thatf is a
first integral of system(1), we get that, after simplifying by (x1 − x2)(x1 − x3)(x2 − x3), g
must satisfy

dg

dt
= 2(x3 + x2 + x1)g, (13)

where the derivative is evaluated along a solution of system(1). We will prove thatg = 0.
For this, we will proceed by reduction to the absurd. Assumeg �= 0 and we will reach a
contradiction. We consider two different cases.

Case 1: g is not divisible byx1 − x2. In this case, usingLemma 3with xl = x1 and
xj = x2, we can writeg asg = g0 + (x1 − x2)g1, whereg0 := g0(x2, x3) �= 0 andg1 :=
g1(x1, x2, x3) are formal power series. Then,g0 satisfies(13) restricted tox1 = x2, that is

− x2

(
x2

∂g0

∂x2
− (x2 − 2x3)

∂g0

∂x3

)
= 2(x3 + 2x2)g0. (14)

Now, we write

g0 =
∑
j≥0

g0,jx
j
2, gj = gj(x3) withgj being formal power series inx3.

We claim that

g0,j = 0 forj ≥ 0. (15)

From (14) we get thatg0 must be divisible byx2 and thus,g0,0 = 0. Hence, Eq.(15) is
proved forj = 0. Now, we assume(15) is true forj = 0, . . . , m − 1 (m ≥ 1) and we will
prove it forj = m. Clearly, by hypothesis of induction,g0 =∑j≥0 g0,j+mx

j+m
2 and then,

from (14), after dividing byxm
2 , we obtain

− 2x3

∑
j≥0

g0,j+mx
j
2 − x2

∑
j≥0

(4 + j + m)g0,j+mx
j
2 + x2(x2 − 2x3)

∑
j≥0

dg0,j+m

dx3
x
j
2 = 0.

(16)
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Then, evaluating(16) on x2 = 0, we get−2x3g0,m = 0, which clearly impliesg0,m = 0
and proves(15)for j = m. Then, by the induction process,(15)holds and from(15)we get
thatg0 = 0, a contradiction.Case 2: g is divisible by x1 − x2. In this case,g = (x1 − x2)jh
with j ≥ 1, h �= 0 andh := h(x1, x2, x3) is a formal power series such that is not divisible
by x1 − x2 and satisfies, after dividing by (x1 − x2)j, the equation

dh

dt
= 2(x1 + x2 + (j + 1)x3)h,

where the derivative ofh is evaluated along a solution of system(1). Then, applying toh
the same arguments used forg in Case 1, we conclude thath = 0, a contradiction.

Hence,g = 0 and the proof of the theorem follows from(12)and the definition of formal
first integral. �
Proof of Theorem 2. To prove that system(1) does not have analytic first integrals in
a neighborhood of zero, we proceed by contradiction. Assume thatg is an analytic first
integral of system(1) in a neighborhoodU ⊂ R

3 of the origin. Clearly,g|U can be written
as a formal power series which turns out to be convergent. Hence, inU, g is a formal first
integral of system(1), a contradiction withTheorem 1. Thus,Theorem 2is proved. �
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